

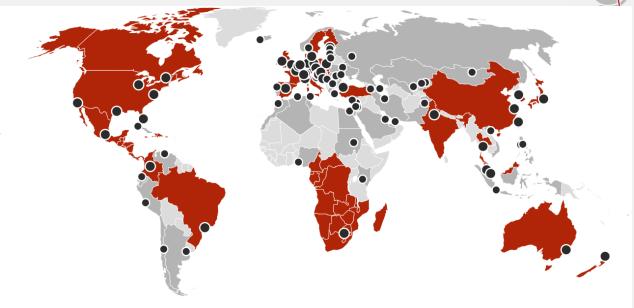
BASICS OF RHEOLOGY

David Burnand
Business Area Rheometry, Training & Application

Introduction

Welcome!

Great people Great instruments

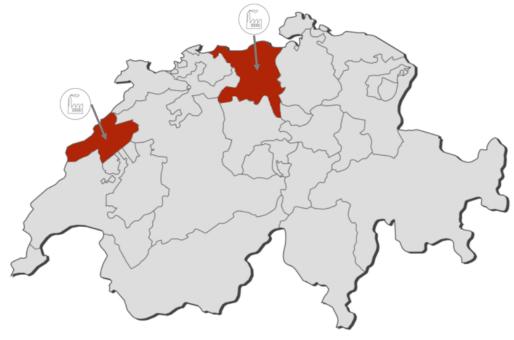


ANTON PAAR DEVELOPS, PRODUCES, AND SELLS HIGH-PRECISION MEASURING INSTRUMENTS AND CUSTOMIZED AUTOMATION AND ROBOTIC SOLUTIONS.

OPERATING WORLDWIDE

9

PRODUCING COMPANIES


33

SALES SUBSIDIARIES **50**

DISTRIBUTION PARTNERS

OPERATING SWITZERLAND

2

LOCATIONS:
BUCHS (AG)
CORCELLES (NE)

1

APPLICATION
LABORATORY
CORCELLES (NE)

9

EMPLOYEES FOR THE SALES DPT 8

EMPLOYEES FOR THE SERVICE DPT 7

EMPLOYEES
FOR THE
ADMINISTRATION

Seminar Program 1st Part

- (1) Rheology and viscous behavior
- (2) Simple viscosity tests
- (3) Rheometers and measuring geometries
- (4) Definitions: shear stress, shear rate, (shear) viscosity
- (5) Rotational tests
- (6) Flow behavior
- (7) (Yield point)
- (8) Further flow curves and viscosity curves
- (9) (Time-dependent behavior (rotation))
- (10) (Temperature-dependent behavior (rotation))

Appendix: Pressure-dependent behavior (rotation)

Drugstore (Apotheken) Museum in Heidelberg, Germany

Rheology

to describe

deformation and flow behavior of all kinds of materials

rhei or rheo ... to flow

Rheometry

measurement of rheological data

Rheology

is used to arrange materials in order.

Let's go through our common household items and line up all that we can find:

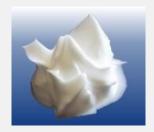
on the left - the liquids

on the right - the solids

and in between - the semi-solid substances


The Rheology Road

The third gy rea


viscous

ideal-viscous liquids water, oils Viscosity Law

viscoelastic liquids glues, shampoos

viscoelastic solids pastes, gels, elastomers

elastic

ideal-elastic solids stone, steel Elasticity Law

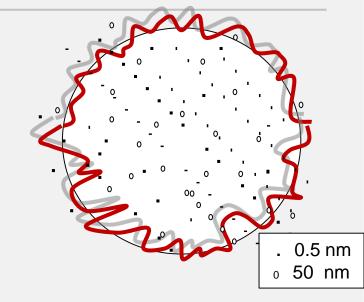
rotational tests

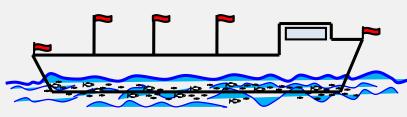
oscillatory tests

What is viscosity? Internal friction or flow resistance

between the molecules and particles, when gliding along each other in a flowing state (Newton in 1687: defectus lubricitatus)

comparison of size


molecules of solvents: about 0.5 nm macro-molecules (polymer coils): about 50 nm particles (minerals): about 5 μ m = 5000 nm


size ratio of molecules and particles

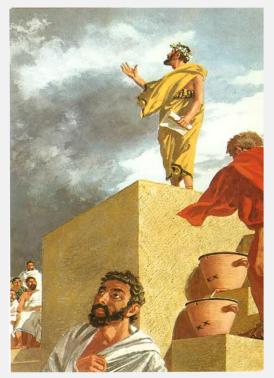
is about 1:100 to 1:10,000 (e.g. 1:1000)

illustrative comparison for 1:1000

a molecule as a 10 cm (0.1m) long fish a particle as a 100 m long ship

Water-clock

(in Greek: klepsýdra)


used to measure time, since about 3500 years in Egypt, and later e.g. at justice courts in Greece

Example:

flow time

of about 6 min for water flowing out of a 5 liter

container equipped with an outlet.

Source: Miquel, P.: So lebten sie im alten Griechenland. Tessloff Nürnberg 1982 / Librairie Hachette, Paris 1981 11

Flow cups

Measurement flow time of low-viscosity liquids

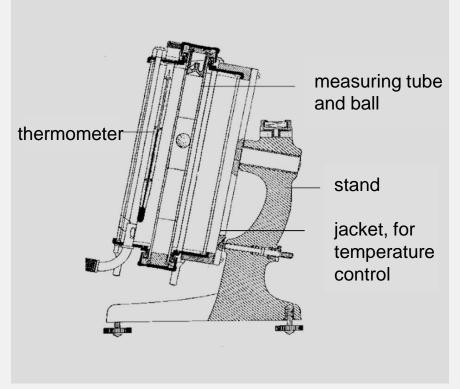
Result: **kinematic viscosity** weight-dependent viscosity

Examples: oils, solvent-based coatings, gravure and flexo printing inks

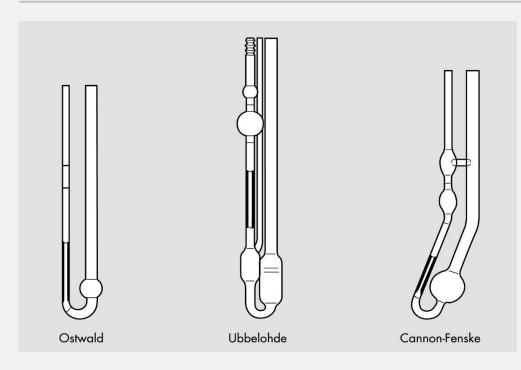
Falling-Ball Viscometers

Measurement:

falling time


of a ball through a tube

- ISO 12058
- DIN 53015


Example:

micro-falling ball viscometer Lovis

by Anton Paar for low-viscosity liquids, e.g. protein dispersions, polymer solutions, beer wort, inks

Glass Capillary Viscometers

Measurement:

flow time

of liquids

Result:

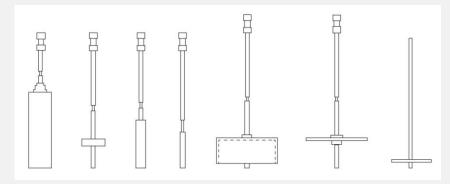
Kinematic Viscosity

Examples:

mineral oils, diluted polymer solutions

Alternative:

SVM viscometer by Anton Paar (DIN 51659-2, EN 16894, ASTM D7042)

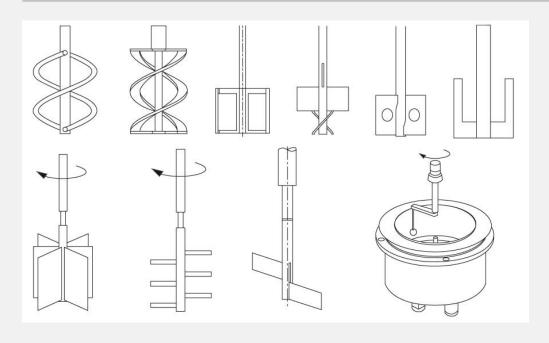

Rotational Viscometers

Preset: rotational speed

Measurement: torque

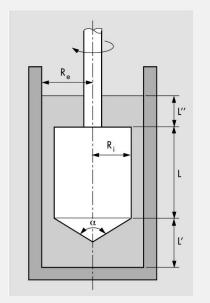
Example: **ViscoQC** by Anton Paar

Relative Viscosity Values

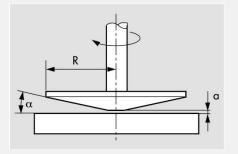

- ISO 2555
- ISO 3219-2

Typical Spindles:

- cylinders
- disks
- T-bars
- pins


Relative Measuring Geometries

- helix (1 & 2)
- stirrer for building materials (BMC)
- starch stirrer
- blade
- anchor-shaped
- vane rotor
- pin rotor
- Krebs spindle, "paddle" (for coatings, Krebs units KU)
- ball (BMS)


3 Rheometers and Measuring Geometries

Absolute measuring geometries (ISO 3219-2 and DIN 53019)

concentric cylinders, CC low-viscosity liquids

cone / plate, CP liquids, dispersions limited particle size

Example: CP 25-1; $\mathbf{a} = 50 \, \mu \text{m}$, max. particle size 10 % of \mathbf{a}

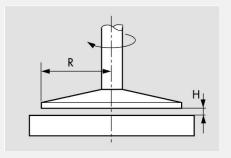
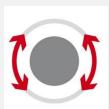


plate / plate, PP gels, pastes, soft solids, polymer melts

3 Rheometers and Measuring Geometries



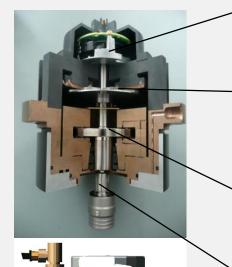
rotation

- shear tests
- tensile tests

oscillation

- shear tests
- torsional tests
- tensile tests

3 Rheometers and Measuring Geometries


Rheometers - each drive requires a bearing

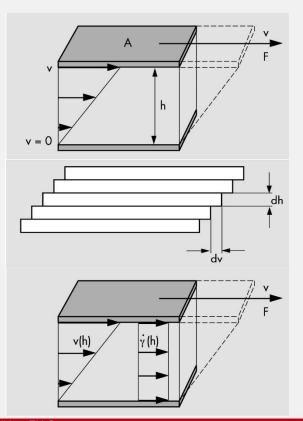
Ball Bearing

- inner ring (rotor)
- rolling element (e.g. balls, cylinders, cones)
- outer ring (stator)

Wikipedia, CC BY-SA 3.0 / CC BY 2.5

1 Encoder opto-electronical detection of deflection angle

2 Measuring drive electro-motor, torque detection

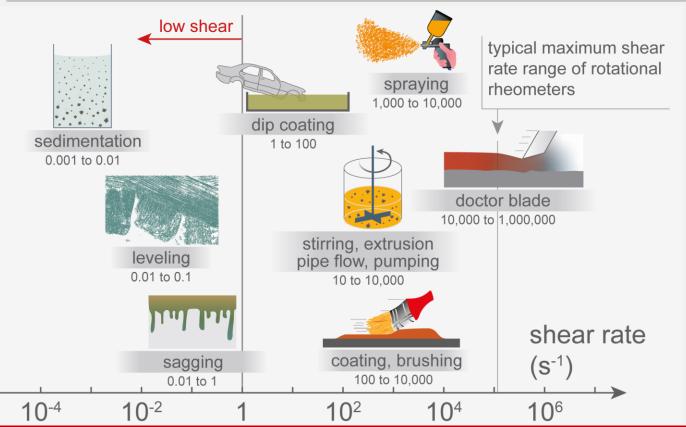

3 Air Bearing

radial and axial: pressurized air between disc (rotor) and porous graphite (stator)

An air bearing is up to 400 000 times more sensitive than a ball bearing!

4 Motor shaft coupling for measuring geometries

The two-plates model

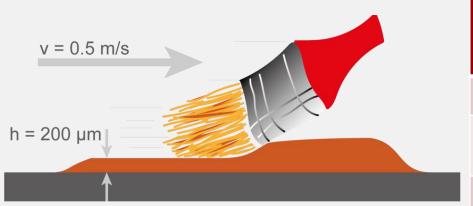

shear stress
$$\tau = F/A$$

unit: $1 N/m^2 = 1 Pa$

shear rate
$$\dot{\gamma} = v/h$$
 unit: $1 \text{ m}/(\text{s}\cdot\text{m}) = 1/\text{s} = 1 \text{ s}^{-1}$

Requirement: Laminar flow in contrast to Turbulent flow

$$\dot{\gamma} = dv / dh = const / const = const$$



Application processes and typical shear rate ranges

Shear rates of coating processes

	painting with a brush	blade coating of a battery slurry	
velocity v	0.5 m/s	0.1 m/s	
wet layer thickness h	200 μm	10 μm	
shear rate $\dot{\gamma}$	2.500 s ⁻¹	10.000 s ⁻¹	

Shear rate calculation: similar to the two-plates model

$$\dot{\dot{\gamma}} = v / h$$

Shear rates in pipes and capillaries

	tooth paste (squeezing)	automotive spray (pneumatic application)	
flow volume V	$1 \text{ cm}^3 = 1 \text{ ml}$	250 ml	
flow time t	1 s	1 min	
volume flow rate V/t (or \dot{V})	1 ml/s = $1 \cdot 10^{-6}$ m ³ /s	250 ml/min = $4.17 \cdot 10^{-6}$ m ³ /s	
pipe (die) diameter d → radius R	6 mm → 3 · 10 ⁻³ m	1.3 mm → 6.5 · 10 ⁻⁴ m	
shear rate $\dot{\gamma}$	$47.2 \text{ s}^{-1} \approx 50 \text{ s}^{-1}$	$19,318 \text{ s}^{-1} \approx 20,000 \text{ s}^{-1}$	

Shear rate calculation: formula of Hagen and Poiseuille

$$\dot{\dot{\gamma}} = (4 \cdot V) / (\pi \cdot R^3 \cdot t)$$

Isaac Newton (1643 to 1727) wrote about the flow resistance of fluids (e.g. of air and water).

This was later known as:

Viscosity Law "of Newton"
was formulated in the 19. century
(e.g. by G.G. Stokes in 1845).

(shear) viscosity

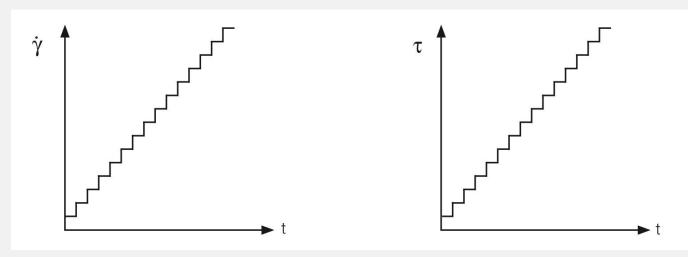
$$\eta = \tau / \dot{\gamma}$$

unit: 1 Pa / (1/s) = 1 Pas = 1000 mPas

Previously used unit (not SI): 1 cP (centi-poise) = 1 mPas

materials	viscosity η		
gases / air	0.01 to 0.02 / 0.018 mPas		
water at 20 °C (0 / 60 / 100 °C)	1.0 mPas (1.8 / 0.47 / 0.28 mPas)		
milk, coffee creams	2 to 10 mPas		
olive oils	≈ 100 mPas		
motor oils, e.g. SAE 10W-30, at 23 / 100 °C	175 / 20 mPas		
polymer melts (dependent on T and $\dot{\gamma}$)	10 to 10,000 Pas		
bitumen (at T = 80 / 40 / 0 °C)	200 Pas / 20 kPas / 1 MPas		

5 Rotational Tests

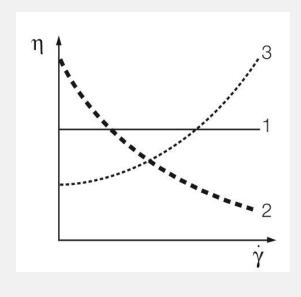

rotation CSR controlled shear rate	test preset		result	
raw data	rotational speed	n [min ⁻¹]	torque M	[Nm]
rheological parameters	shear rate $\dot{\gamma}$	[s ⁻¹]	shear stress τ	[Pa]
rotation CSS controlled shear stress	test preset		result	
raw data	torque M	[Nm]	rotational speed	n [min ⁻¹)
1 3111 31313	1 - 1		•	- /

torque M: 1 Nm = 1000 mNm = 1,000,000 μ Nm = 1,000,000,000 nNm

For each measuring geometry there are **two conversion factors**: $M \rightarrow \tau$ and $n \rightarrow \dot{\gamma}$

5 Rotational Tests

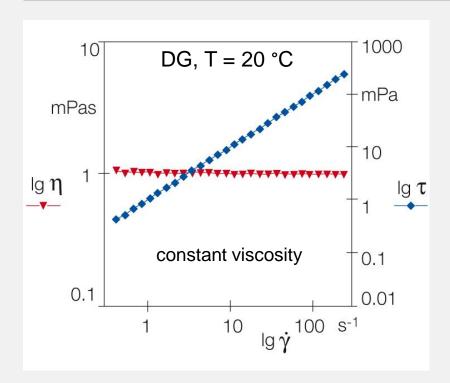
rotational speed preset


shear rate ramp
step-like upwards or downwards

CSR: controlled shear rate

torque preset

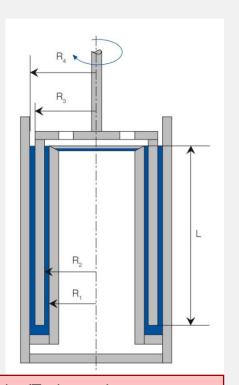
shear stress ramp
step-like upwards or downwards
CSS: controlled shear stress



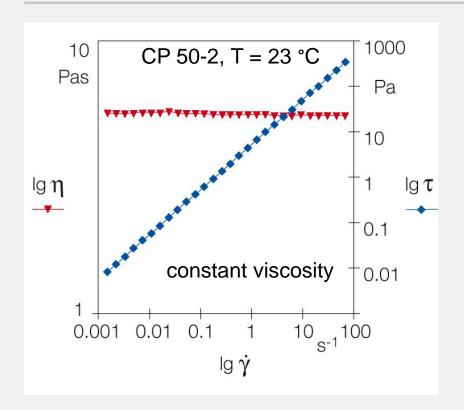
Viscosity curves

- 1 ideal-viscous
- 2 shear-thinning
- 3 shear-thickening

(Newtonian)
(pseudoplastic)
(dilatant)



Water

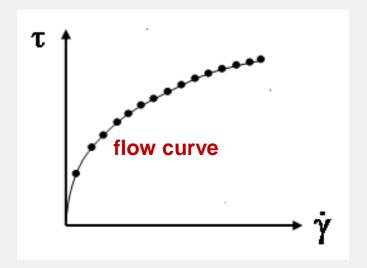

Double-gap measuring geometry DG for low-viscosity liquids

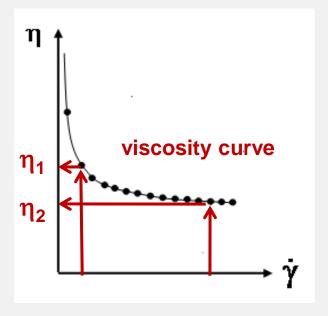
ISO 3219-2

→ movie (Taylor vortices, via PIV, particle imaging velocimetry

Silicone oil

logarithmic scale


Advantage: Very low values can be displayed


cone / plate measuring geometry, CP

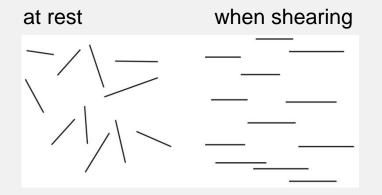
- shear-thinning
- pseudoplastic

$$\eta_1(\dot{\gamma}) > \eta_2(\dot{\gamma})$$

Polymers: chain-like macro-molecules

molecules are coiled, entanglements

deformation in shear direction, disentanglements


Consequence: shear-thinning flow behavior, decreasing viscosity

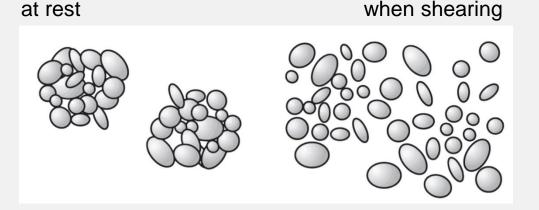
Typical size: molecule coil, hydrodynamic diameter 5 nm to 50 nm PE, M = 100 kg/mol, L = 1000 nm (stretched), d = 0.5 nm, ratio L/d = 2000:1 comparison: spaghetti noodles, 1 mm thick and 2 m long

Suspensions: with needle- or platelet-shaped particles

particles are suspended randomly (when without interaction forces)

particles are oriented in flow direction

Consequence: shear-thinning flow behavior, decreasing viscosity

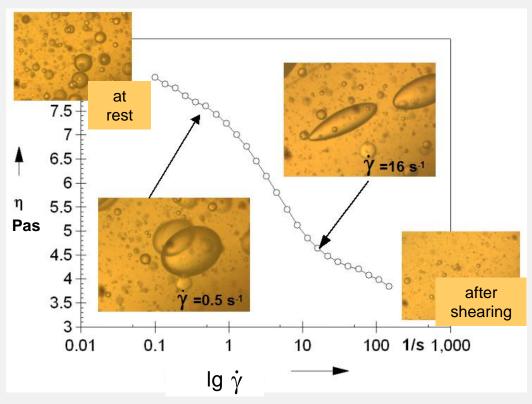

Typical size:

- (1) metallic-effect pigments, aluminum flakesdiameters d = 7 to 30 μm, thickness h = 0.2 to 1 μm, ratio d/h = 30:1
- (2) ceramics, such as Bentonite: length / width / thickness, L x b x h = 800 x 800 x 1 nm

Suspensions containing agglomerated particles

agglomerates entrap and immobilize part of the liquid

agglomerates are disintegrated


Consequence: shear-thinning flow behavior, decreasing viscosity

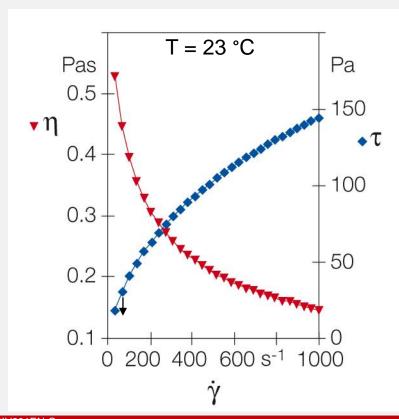
Typical size:

primary particles 1 to 10 nm, aggregates up to 100 nm, agglomerates up to 100 μ m = 0.1 mm

35

Rheo-microscopy

Emulsion: water in silicone oil



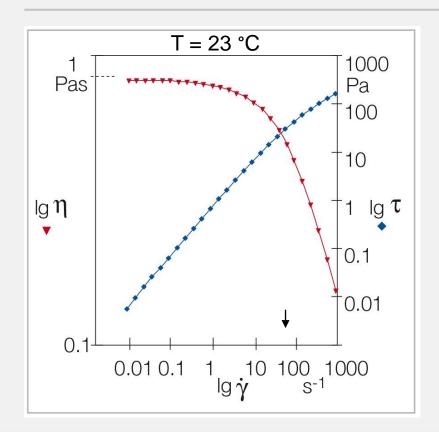
Size and shape of the droplets are dependent on sample preparation and shear rate.

Increase of the volume specific surface ratio due to decreasing droplet size

→ viscosity may increase at rest after shearing.

Wall paper paste

aqueous methylcellulose solution



uncrosslinked polymer

typical behavior of polymer solutions

→ continued shear-thinning

Wall paper paste

aqueous methylcellulose solution

uncrosslinked polymer

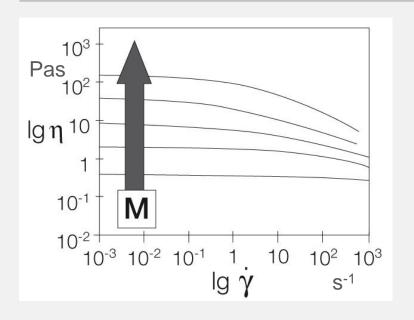
for $\dot{\gamma} < 0.1 \text{ s}^{-1}$ plateau of the zero-shear viscosity

logarithmic scale focus on low-shear range

Uncrosslinked polymers in the low-shear range, zero-shear viscosity

Superposition of two processes

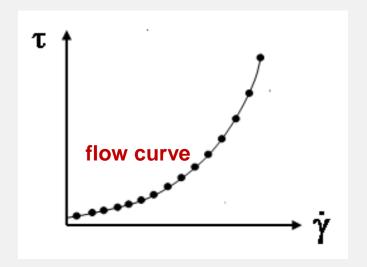
- (1) Orientation of the macromolecules under shear load
 - → disentanglements
 - → viscosity decreases
- (2) Re-coiling due to visco-elastic behavior
 - → re-entanglements
 - → viscosity increases

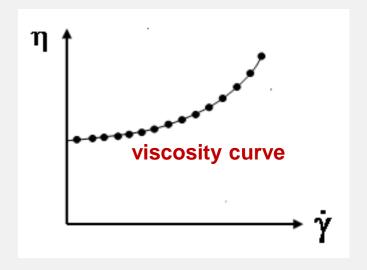

Result:

no change of viscosity in the low-shear range

 $\rightarrow \eta_0$ value

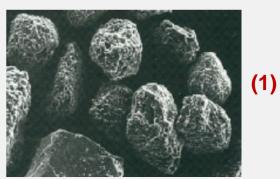
usually observed for $\dot{\gamma}$ < 1 s⁻¹

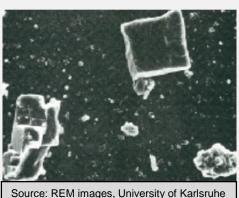



Uncrosslinked polymers

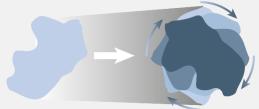
An increasing average molar mass M results in a higher value of the zero-shear viscosity.

(for a constant polymer concentration)





- shear-thickening
- dilatant



(2)

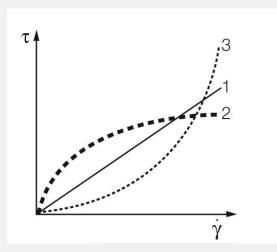
Influence of the particle shape

Aqueous chalkstone suspensions

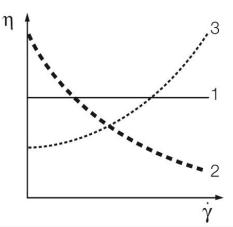
- (1) spherical particles
- (2) cube-shaped particles

Comparison:

Same solid concentration, suspension (2) showed shear-thickening already at lower shear rates.


Reason:

difference in required volume


→ in flowing dispersions, particles are permanently in a rotational motion

flow curves

viscosity curves

- 1 ideal-viscous
- 2 shear-thinning
- 3 shear-thickening

(Newtonian) (pseudoplastic) (dilatant)

Summary: Seminar Program 1st part

- (1) Rheology and viscous behavior viscosity as flow resistance, internal friction; "Rheology Road"
- (2) Simple viscosity tests flow cups, falling-ball & glass-capillary viscometers; rotational viscometers, relative measuring geometries
- (3) Rheometers and measuring geometries absolute measuring geometries; concentric cylinders, cone/plate, plate/plate; ball bearing & air bearing
- (4) Definitions: shear stress, shear rate, (shear) viscosity laminar & turbulent flow, shear rate range & technical applications; viscosity law, kinematic viscosity
- (5) Rotational tests raw data and rheological parameters; controlled shear rate (CSR), controlled shear stress (CSS)
- (6) Flow behavior ideal-viscous, Newtonian; shear-thinning, pseudoplastic; shear-thickening, dilatant; rheo-microscopy; zero-shear viscosity
- (7) Yield point (via flow curves and via γ/τ diagrams) as interception on the stress-axis, mathematical curve fitting, regression models; crossover of fitting lines
- (8) Further flow curves and viscosity curves effect of rheology additives; transient viscosity peak
- (9) Time-dependent behavior (rotation) step tests, structure recovery, thixotropic behavior; curing
- (10) Temperature-dependent behavior (rotation) softening; crystallization; gelation, curing; pour point (oils)

Appendix: Pressure-dependent behavior (rotation)

Seminar Program 2nd part

- (11) Viscoelastic behavior
- (12) Definitions: deformation, shear strain, shear modulus
- (13) Yield point via γ / τ diagram
- (14) Oscillatory tests
- (15) Amplitude sweeps
- (16) Frequency sweeps
- (17) (Time-dependent behavior (oscillation))
- (18) Temperature-dependent behavior (oscillation)

Appendix:

- (19) DMA in torsion (on solid specimens)
- (20) (DMA in tension)

11 Rheology and Viscous Behavior

The Rheology Road

The kilosiogy itea

viscous

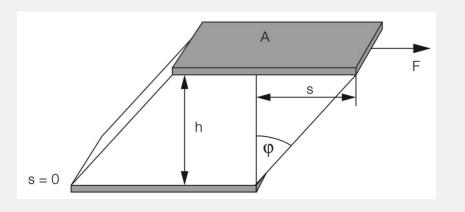
ideal-viscous liquids water, oils Viscosity Law

viscoelastic

viscoelastic liquids glues, shampoos

viscoelastic solids pastes, gels, elastomers

elastic


ideal-elastic solids stone, steel Elasticity Law

rotational tests

oscillatory tests

12 Definitions: Deformation, Strain, Shear Modulus

Two-plates model

shear stress

unit:
$$1 \text{ N} / \text{m}^2 = 1 \text{ Pa}$$

$$\tau = F/A$$

unit:
$$1 \text{ m} / \text{m} = 1 = 100 \%$$

$$\gamma = s/h$$

12 Definitions: **Deformation, Strain, Shear Modulus**

Robert Hooke (1635 to 1703), in 1676 he states for solids proportionality of force and deformation.

The later so-called **Elasticity Law of Hooke** was formulated in the 19. century (e.g. by T. Young in 1807, or A.L. Cauchy in 1827).

Shear modulus

$$\textbf{G} = \tau \, / \, \gamma$$

unit: (1 Pa / 1 =) 1 Pa

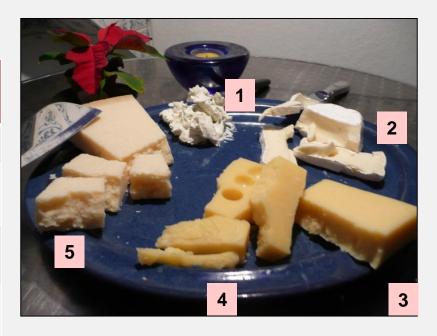
1 GPa = $1000 \text{ MPa} = 10^6 \text{ kPa} = 10^9 \text{ Pa}$

Giga-pascal, Mega-pascal, kilo-pascal

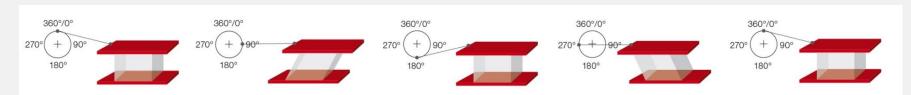
spring force

deflection path spring constant C (stiffness)

law of springs: F/s=C



12 Definitions: Deformation, Strain, Shear Modulus

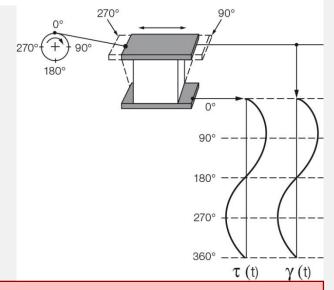


Material stiffness and shear moduli

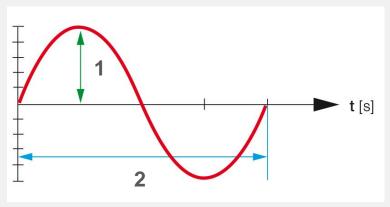
cheese type	example	shear modulus (around)
1 cream	spread cheese	1 kPa
2 soft	French Camembert	10 kPa
3 semi- hard	Holland Gouda (young)	0.1 MPa
4 hard	Swiss Emmentaler	0.5 MPa
5 extra hard	Italian Parmigiano	1 MPa

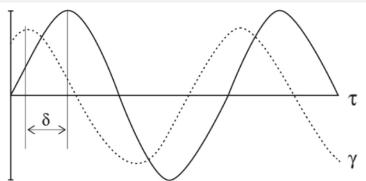
Two- plates model, equipped with two sensors,

top preset of deflection path (strain or deformation)


bottom measurement of resulting force (shear stress)

sinusoidal preset


ideal-elastic behavior


stiff sample (e.g. a stone or steel): no time shift between the sine curves of preset strain and resulting shear stress:

the curves of γ and τ are "in phase"

Preset

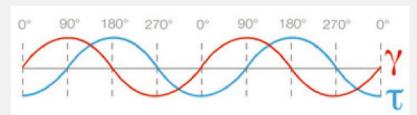
constant amplitude (1) and constant frequency (2)

Result

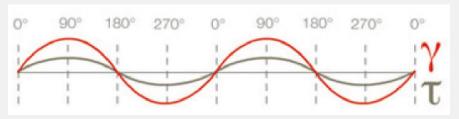
Most samples show viscoelastic behavior with a phase shift δ

between the maxima of the sine curves as the retardation of the measuring response compared to the preset.

ideal-viscous behavior


fluid, liquid: $90^{\circ} \geq \delta > 45^{\circ}$

and


ideal-elastic behavior

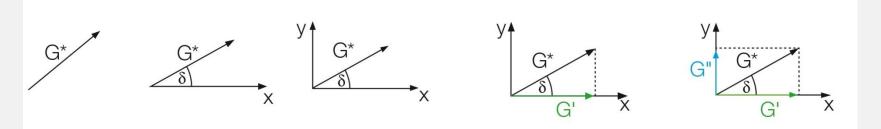
solid, gel-like: $45^{\circ} > \delta \geq 0^{\circ}$

Illustrative concept: δ as the "street number in Rheology Road"

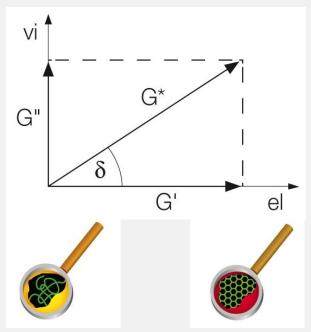
ideal-viscous: $\delta = 90^{\circ}$

ideal-elastic: $\delta = 0^{\circ}$

Vector diagram


to determine the parameters G' and G" based on the Elasticity Law

- preset of γ_A
- measurement of τ_A and phase shift angle δ (index A for amplitude)


Calculation:

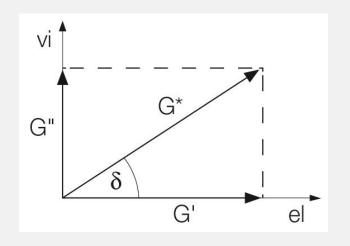
complex shear modulus G*

$$G^* = \tau_A / \gamma_A$$

Molecules

left: freely moveable, uncrosslinked

right: crosslinked


Vector diagram

- G* complex shear modulus, viscoelastic behavior in total
- G' (shear) storage modulus, elastic shear modulus
- G" (shear) loss modulus, viscous shear modulus
- G' (G-prime) for the stored,
- G" (G-double prime) for the **lost** (dissipated)

deformation energy

internal friction when flowing

 $tan\delta = G''/G'$

loss factor (or damping factor)

tangent delta unit: dimensionless (or 1)

"viscoelastic ratio" of viscous and elastic portions

use case point of phase transition

G' = G'' or $tan\delta = 1$ or $\delta = 45^{\circ}$

viscous		viscoelastic		elastic	
G" >> G'	G" > G'	G'' = G'	G' > G"	G' >> G"	
liquid, fluid state		sol / gel transition	gel-like, solid state		

tanδ = G"/G'

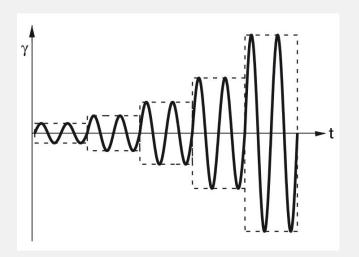
tanδ >> 1	tanδ > 1	$tan\delta = 1$	$tan\delta < 1$	tanδ << 1
$\rightarrow \infty$				\rightarrow 0

ideal-viscous: $tan\delta > 100:1 = 100$

for scientists: $tan\delta > 1000$

ideal-elastic: $tan\delta < 1:100 = 0.01$

for scientists: $tan\delta < 0.001$



Oscillation CSD contr. shear deformation	test preset		result	
raw data	deflection angle φ(t)	[rad]	torque M(t) phase shift δ	[Nm] [degrees]
rheological parameters	Deformation/strain $\gamma(t)$	[%]	shear stress $\tau(t)$ phase shift δ	[Pa] [degrees]
0				
Oscillation CSS controlled shear stress	test preset		result	
	test preset torque M(t)	[Nm]	result	[rad] [degrees]

 φ in degrees or in 1 rad; 360° corresponds to 2π rad

Preset

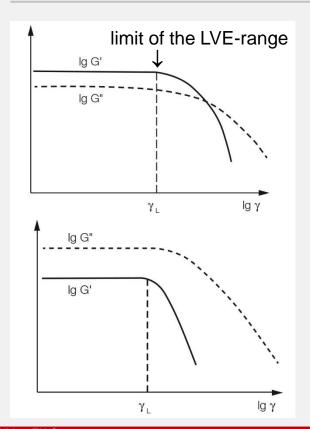
constant frequency

(e.g. angular frequency $\omega = 10 \text{ rad/s}$)

variable strain (deformation)

strain sweep

or variable stress


stress sweep

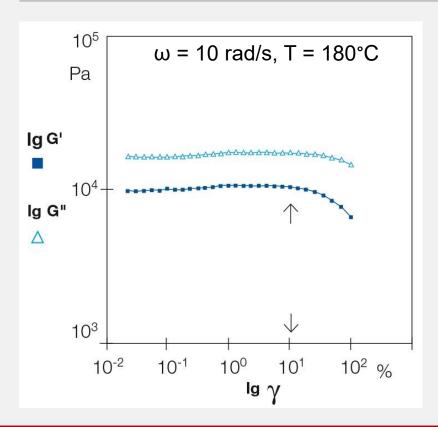
Frequency conversion: $\omega = 2\pi \cdot f$

with angular frequency ω in rad/s (or s⁻¹) and frequency f in Hz

Please note: Hz is not a SI unit.

Result

storage modulus **G'** (elastic behavior) loss modulus **G'** (viscous behavior)


limiting value of the linear viscoelastic (LVE-) range when reaching γ_{L} linearity limit of shear strain

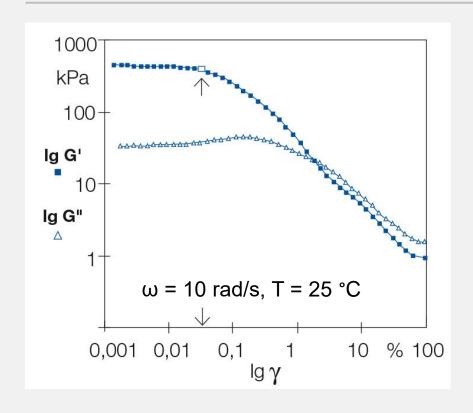
at **given** conditions, i.e., at the **preset** frequency

in the LVE-range

top: G' > G" (gel-like, solid structure)
bottom: G" > G' (liquid, fluid structure)

Polymer melt

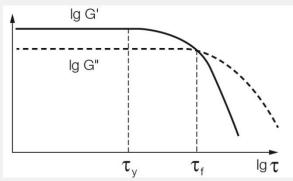
liquid state

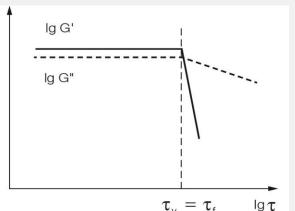

because G" > G'

viscoelastic fluid

limit of the LVE range at

$$\gamma_1 = 10 \% = 0.1$$


Sealant



in the LVE range gel-like or pasty state because G' > G"

limit of the LVE-range at $\gamma_L = 0.026 \%$

- yield point τ_y
 value at the limit of the LVE-range,
 or linearity limit of shear stress
 (also as τ_L)
- flow point τ_f
 value at the crossover point G' = G"
 (also as τ_{co})

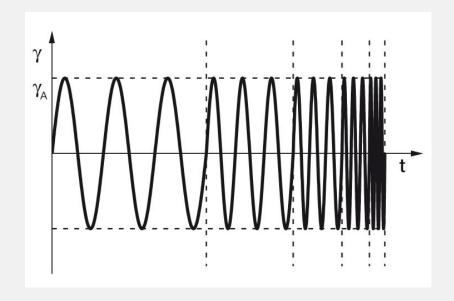
For both values:
At **given** test conditions, i.e. **preset** frequency

Brittle fracture if $\tau_y = \tau_f$

Oscillatory tests: calculation of shear rate values

$$\dot{\gamma} = \gamma_{A} \cdot \omega$$
 unit: 100 % · (1 rad/s) = 1 · (1/s) = 1 s⁻¹

Example


amplitude sweep

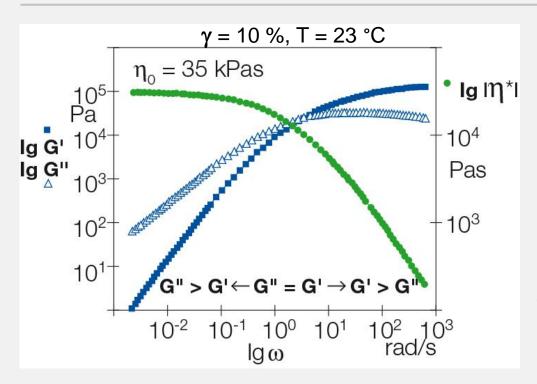
$$\gamma_{A} = 10 \%$$
 $\omega = 10 \text{ rad/s}$
 $\dot{\gamma} = 10 \% \cdot 10 \text{ rad/s} = 0.1 \cdot 10 \text{ s}^{-1} = 1 \text{ s}^{-1}$

Summary:

Usually oscillatory tests are performed in the low-shear range.

Preset

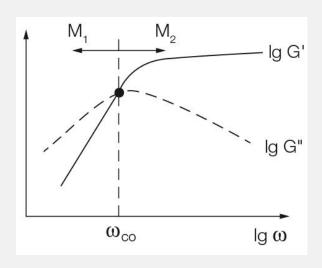
constant amplitude


shear strain (or shear stress) within the LVE-range

and

variable frequency

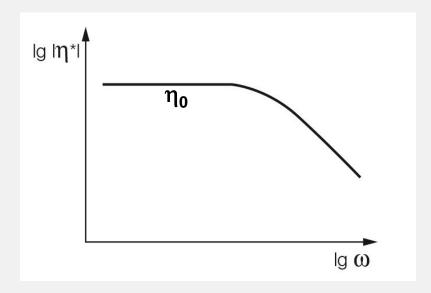
Precondition: LVE-range has been checked by an amplitude sweep.



PDMS polydi-methyl siloxane

typical behavior of uncrosslinked polymers showing a crossover point G' = G"

uncrosslinked polymers


average molar mass M

position of the crossover point G' = G"

depends on M (here: $M_1 > M_2$)

relaxation time $\lambda = 1 / \omega_{co}$

Uncrosslinked polymers complex viscosity η*

$$|\eta^*| = G^* / \omega$$

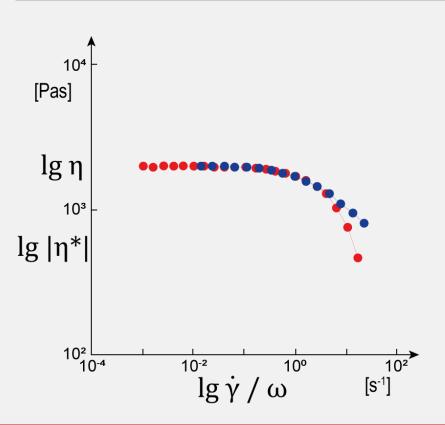
unit: 1 Pas = 1 Pa / (1/s)

 $\begin{array}{l} \text{Maxwellian fluids} \text{ show a} \\ \text{plateau of the zero-shear viscosity } \eta_0 \\ \text{at low frequencies} \end{array}$

 η_0 is proportional to the molar mass M (at the same polymer concentration), as for viscosity curves $\eta(\dot{\gamma})$ in rotation.

Cox / Merz relation

In the low-shear range, for uncrosslinked polymers:


The plateau of the zero-shear viscosity η_0 is on the same level for both.

(1) shear viscosity $\eta(\dot{\gamma})$ (in rotation)

(2) complex viscosity $|\eta^*(\omega)|$ (in oscillation)

Reason: In the low-shear range or the LVE-range, respectively, applies: $\eta(\dot{\gamma}) = |\eta^*(\omega)|$

Cox / Merz relation

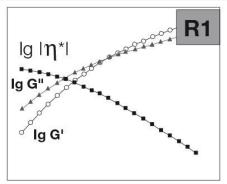
Polymer melt

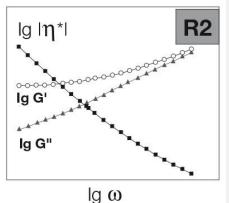
oscillation frequency sweep

complex viscosity $|\eta^*(\omega)|$

rotation

shear rate dependent


(shear) viscosity $\eta(\dot{\gamma})$


Summary:

Same plateau value of the zero-shear viscosity in the low-shear range

Source: Cox, W.P., Merz, E.H.: J. Polym. Sci., 1958

Behavior-at-rest of two resins

→ check low frequency range

top: uncrosslinked molecules

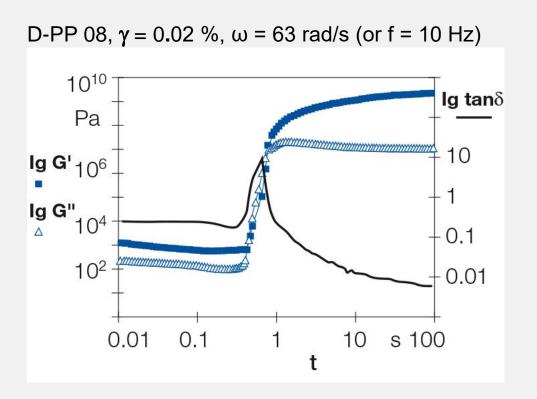
G" > G'

 η^* shows plateau of the zero-shear viscosity η_0

→ viscoelastic liquid

bottom: cross-linked molecules

G' > G''


η* rises towards infinity

→ solid structure

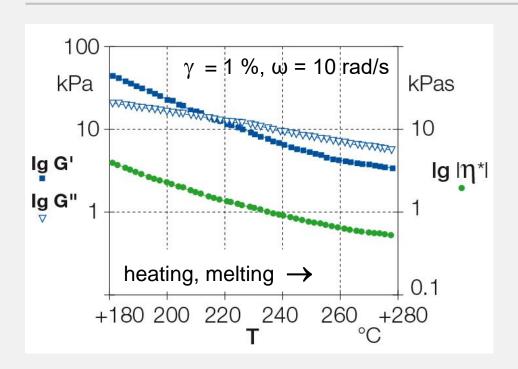
Comment: Values of η^* are not useful where G' > G".

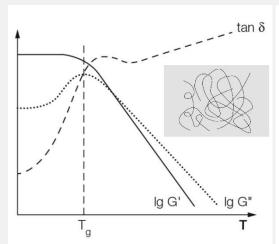
17 Time-dependent Behavior (Oscillation)

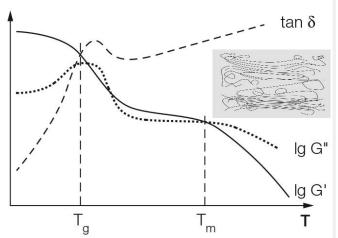
UV-curing resin

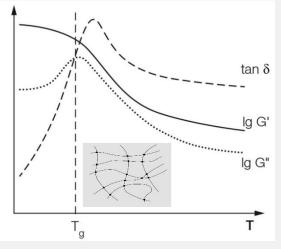
fast curing reaction

main reaction in 0.5 s finally very rigid, since G' > 1 GPa

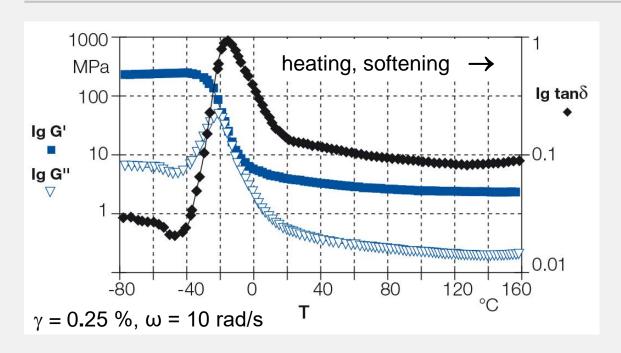

$$tan\delta = G'' / G'$$


ABS resin


blend of 3 immiscible polymers


softening temperature

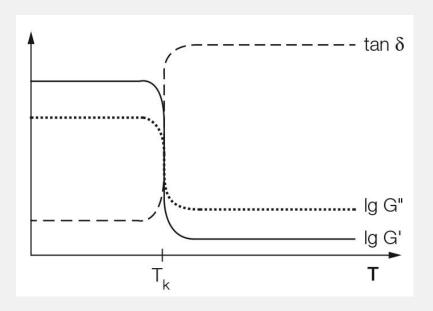
Polymers (dynamic-mechanical analysis DMA, acc. to ISO 6721-1)


amorphous uncrosslinked, no order

partially crystalline uncrosslinked, partially ordered

chemically cross-linked covalent primary bonds

 T_g glass transition temperature at the G" maximum (peak): ISO 6721-11 T_m melting temperature


Rubber

crosslinked polymer

$$\begin{split} &T_g = \text{-22 °C (G" max)} \\ &T_g = \text{-16 °C (tanδ max)} \\ &\text{no } T_m \end{split}$$

Melting or crystallization crystallizing substances

Preset

constant dynamic-mechanical shear conditions

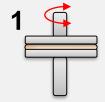
- amplitude in the LVE-range
- usually $\omega = 10 \text{ rad/s}$

Result

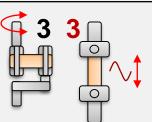
steeply decreasing or increasing curves in a relatively narrow temperature range

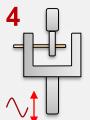
T_k crystallization temperature

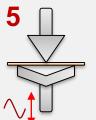
Appendix: Further Tests besides Shear Tests

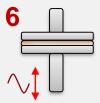


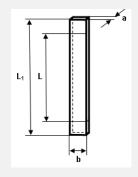
Overview: Test modes according to ISO 6721


with oscillation, to measure dynamic-mechanical properties

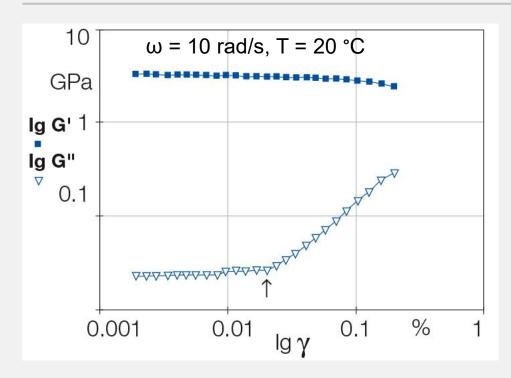

as **DMA** or **DMTA**, dynamic-mechanical (thermal) analysis (oscillatory or unidirectional)


	Test mode	Samples	Measured moduli	
1.	Shear	liquids, dispersions, soft solids	G _	otational drive
2.	Torsion	solids	$G \subset \mathbb{Z}$	
3./3 .	. Tension / extension	highly viscous liquids, films, solids	E	
4.	Cantilever bending	solids	E	ve ve
5 .	3-point bending	solids	E '√↓	linear drive
6.	Compression	rubber, solids	E _c	
				<u></u>





19 DMA in Torsion


Solid Torsion bars

measuring geometry SRF (solid rectangular fixture)


typical dimensions: $54 \times 10 \times 1 \text{ (L}_1 \times b \times a, \text{ in mm)},$ with L = 40 mm free length, between the clamps total length L₁ = L + (2 x 7) mm

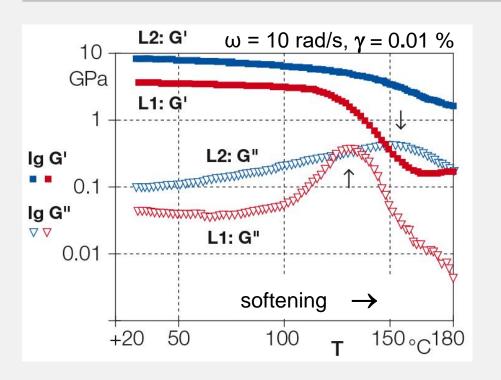
19 DMA in Torsion

Fiber-reinforced resin

resin matrix and fibers Source: BASF calendar 2013

Amplitude Sweep

LVE-range up to $\gamma = 0.02 \%$


Rising G":

increasing consumption of deformation energy (lost energy) due to the formation of

micro-cracks

19 DM(T)A in Torsion

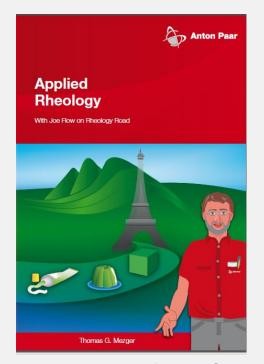
Laminates

unmodified laminate L1 reinforced laminate L2

increase of G' from 3 GPa to 8 GPa

→ harder surface, less abrasion

Summary: Seminar Program 2nd part


- (11) Viscoelastic behavior "Rheology Road", stringiness, rod climbing or Weissenberg-effect, extrudate swelling, melt fracture
- (12) Definitions: deformation, shear strain, shear modulus elasticity law
- (13) Yield point via γ / τ diagram straight fitting line in the linear-elastic deformation range
- (14) Oscillatory tests phase shift; raw data and rheological parameters; shear storage modulus, shear loss modulus, loss factor or damping factor; sol / gel transition
- (15) Amplitude sweeps LVE-range, gel strength, brittle break behavior, G"-maximum; yield point & flow point
- (16) Frequency sweeps uncrosslinked polymers: average molar mass, Maxwellian behavior; complex viscosity, zero-shear viscosity; cross-linked polymers; dispersion stability, syneresis
- (17) Time-dependent behavior (oscillation) step tests, structure recovery, thixotropic behavior; ORO-test; curing, UV-curing
- (18) Temperature-dependent behavior (oscillation) softening, melting, T_g -values; crystallization; high-temperature tests; gelation, curing

Appendix:

- (19) DMA in torsion solid torsion bars; DMA and DMTA in torsion; T_q values
- (20) DMA in tension extensional rate, ext. viscosity, strain softening, strain hardening; tensile stress, elongation, E-modulus, Young's modulus, Poisson's ratio; DM(T)A in extension; E' & E'' moduli, T_a values

81

Rheo-Books

9 languages available: German, English, Chinese, Korean, French, Spanish, Portuguese, Italian, Japanese additionally: **The Rheology Handbook** (5th ed., publisher Vincentz, Hanover, 432 p.) also available in German

End of the Rheo-Seminar

Have a nice day...